Group online adaptive learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Online Learning

We propose a general framework for studying adaptive regret bounds in the online learning framework, including model selection bounds and data-dependent bounds. Given a dataor model-dependent bound we ask, “Does there exist some algorithm achieving this bound?” We show that modifications to recently introduced sequential complexity measures can be used to answer this question by providing suffi...

متن کامل

Strongly Adaptive Online Learning

Strongly adaptive algorithms are algorithms whose performance on every time interval is close to optimal. We present a reduction that can transform standard low-regret algorithms to strongly adaptive. As a consequence, we derive simple, yet efficient, strongly adaptive algorithms for a handful of problems.

متن کامل

Online Learning for Group Lasso

We develop a novel online learning algorithm for the group lasso in order to efficiently find the important explanatory factors in a grouped manner. Different from traditional batch-mode group lasso algorithms, which suffer from the inefficiency and poor scalability, our proposed algorithm performs in an online mode and scales well: at each iteration one can update the weight vector according t...

متن کامل

Supplement: Strongly Adaptive Online Learning

Proof (of Lemma 1) The proof is by induction on t. For t = 1, we have˜W 1 = ˜ w 1 ([1, 1]) = 1. Next, we assume that the claim holds for any t ≤ t and prove it for t+1. Since |{[q, s] ∈ I : q = t}| ≤ log(t)+ 1 for all t ≥ 1, we have˜W t+1 = I=[q,s] ∈I˜w t+1 (I) = I=[t+1,s] ∈I˜w t+1 (I) + I=[q,s]∈I: q≤t˜w t+1 (I) ≤ log(t + 1) + 1 + I=[q,s]∈I: q≤t˜w t+1 (I) .

متن کامل

Online Group-Structured Dictionary Learning Supplementary Material

Lemma 1. If ρ = 0, then Mt = M0 +M′t (∀t ≥ 1). When ρ > 0, then Mt = M ′ t (∀t ≥ 1). Proof. 1. Case ρ = 0: Since γt = 1 (∀t ≥ 1), thus Mt = M0 + ∑t i=1 Ni. We also have that ( i t 0 = 1 (∀i ≥ 1), and therefore M′t = ∑t i=1 Ni, which completes the proof. 2. Case ρ > 0: The proof proceeds by induction. • t = 1: In this case γ1 = 0, M1 = 0 × M0 + N1 = N1 and M′1 = N1, which proves that M1 = M ′ 1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2017

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-017-5661-5